HALOGENACETIC ACIDS AS SYNERGIC AGENTS IN THE SOLVENT EXTRACTION OF HAFNIUM*

J.HÁLA

Department of Inorganic Chemistry, Purkyně University, 611 37 Brno

Received October 8th, 1973

A synergic effect occurs when hafnium is extracted from 2M-HClO₄ medium into solution of N-benzoyl-N-phenylhydroxylamine in organic solvents, in the presence of halogenacetic acids. The magnitude of this effect increases with the increasing number of halogen atoms in the molecule of an acid. The most powerful synergic agent is trichloroacetic acid which increases the distribution ratio of halogenacetic acids that synergism is caused by the extraction of the mixed complex HfL₃A (A = CCl₃COO⁻, CF₃COO⁻, CHBr₂COO⁻).

In the course of systematic study of hafnium extraction by chelating agents from 2M-HClO₄ medium in the presence of various unidentate ligands it has been found that N-benzoyl-N-phenylhydroxylamine (HL) differs from other extracting agents in that it causes synergism in the presence of phenols⁴ or nitrophenols². Hydrogen bonding between phenols or nitrophenols and basic centres of the HfL₄ chelate has been suggested as the most likely mechanism of the synergism in these systems. In this paper, the synergic effects which occur in the extraction of hafnium by N-benzoyl-N-phenylhydroxylamine and di-n-butylphosphoric acid in the presence of halogen-acctic acids are described.

EXPERIMENTAL

All details of extraction experiments, the preparation of a stock solution of the $^{175+181}$ Hf (IV) tracer and details of radioactivity measurement have been given in previous papers^{1,2}. The only difference is that the synergic agent was originally present in the 2M-HClO₄ aqueous phase. The composition of the organic phase is mentioned further in the text. The total concentration of hafnium in each extraction experiment was $\leq 1 \cdot 10^{-6}$ M. All extractions were carried out at 20°C in a thermostated room.

The distribution of halogenacetic acids between aqueous 2M-HClO₄ and organic phase was determined by the titration of halogenacetic acid in the equilibriated organic phase. Water coextracted with trifluoroacetic acid was determined in the organic phase by the Fischer method.

All solvents used and perchloric acid were of reagent grade purity. Monochloroacetic acid (Xenon, Lodz, Poland), trichloroacetic acid (Reanal, Budapest), monobromo- (Sojuzchimexport,

Part XVI in the series Extraction of Hafnium; Part XV: This Journal 39, 1843 (1974).

3476

USSR), dibromo- and monoidoacetic acids (Lachema, Brno), were all of reagent grade purity and were not further purified. Only trifluoroacetic acid (Reachim, USSR) was redistilled and the $71-73^{\circ}$ C fraction used. The concentration of all acid solutions was determined by the titration with a standard NaOH solution.

RESULTS AND DISCUSSION

Dimerization of Halogenacetic Acids in Benzene

Considering halogenacetic acids (HA) as synergic agents, their distribution between aqueous and organic phases must be taken into account. If we assume that only monomeric acid HA is present in the aqueous phase whereas both monomer and dimer (HA)₂ exist in the organic phase, the distribution of HA is then described by the distribution constant of the monomer $K_D = [HA]_{org}[HA]_{aq}^{-1}$ and by the dimerization constant of the acid in the organic phase $K_2 = [(HA)_2]_{org}[HA]_{org}^{-1}$. Making these assumptions, however, hydrated forms of (HA) and (HA)₂ in the organic phase^{3,4} are neglected. In this paper, the halogenacetic acid equilibria for the system 2M-HClO₄/benzene (further used in studies of the synergic extraction of hafnium) have been determined since the literature survey yielded only conflicting data which had been obtained under different conditions⁵. Using the above-mentioned constants and the total equilibrium concentrations of halogenacetic acid in the aqueous and organic phases, for which we can write

$$C_{aq} = [HA]_{aq}$$
 and $C_{org} = [HA]_{org} + 2[(HA)_2]_{org}$

it is possible to obtain the constants $K_{\rm D}$ and $K_{\rm 2}$ from the distribution ratio of the acid⁶

$$D_{\rm HA} = C_{\rm org} \, C_{\rm aq}^{-1} = K_{\rm D} + 2K_{\rm D}^2 K_2 [{\rm HA}]_{\rm aq} \,. \tag{1}$$

Similar equation was used for trichloroacetic acid whose dissociation in 2M-HClO₄ cannot be neglected

$$D_{\rm HA}\varphi = K_{\rm D} + 2K_{\rm D}^2 K_2 [\rm HA]_{\rm aq} , \qquad (2)$$

where $\varphi = (1 + K_{s}[H^{+}]^{-1})$. The values of $[H^{+}]$ and $[HA]_{aq}$ were calculated by successive approximations, as it had been done for mixtures of HNO₃ and HClO₄ (ref.⁷), using the dissociation constant of CCl₃COOH $K_{a} = 3.0$ for I = 2.0 (see⁸). The dependences of D_{HA} on $[HA]_{aq}$ for dibromo- and monohalogenacetic acids according to the equation (1) and for CCl₃COOH using the equation (2) were processed by the method of least squares. Thus obtained constants are presented in Table I.

Consistently with a common concept of the distribution of covalent molecules⁹, the distribution constants increase in a homologous series of acids with the size of the substituted alkyl group: $CH_2Cl < CH_2Br < CH_2I$; $CH_2Br < CHBr_2$; $CF_3 < CH_2I$; $CH_2Br < CHBr_2$; $CF_3 < CH_2I$; $CH_2Br < CHBr_2$; $CF_3 < CHBr_$ < CCl₃. For trifluoroacetic acid the dimerization constant was not determined and the distribution constant was found by extrapolation of D_{HA} when $[HA]_{ag} \rightarrow 0$. In fact the distribution ratio of the acid increases only very little with the increasing acid equilibrium concentration in the aqueous phase which is an evidence that CF₃COOH does not appreciably dimerize in benzene. This is in good agreement with the behaviour of CF₃COOH in dry benzene¹⁰, for which a very low value of dimerization constant $K_2(2.61 \text{ mol}^{-1})$ was found. The comparison with dimerization constants for dry cyclohexane (192 l mol⁻¹) and CCl₄ (149 l mol⁻¹)¹⁰ shows a strong interaction between monomeric CF₃COOH and π -electron system of benzene. It is therefore not surprising that in the presence of another even stronger base, such as water, in the equilibrium benzene phase, the dimerization is further suppressed. This is also indicated by the co-extraction of water in the presence of CF₃COOH in the system 2M-HClO₄/benzene. For 1M-CF₃COOH, where $[HA]_{org} = 0.0165M$, the equilibrium concentration of water in the organic phase ≈ 0.013 M, which approximately corresponds to the presence of CF₃COOH monohydrate which was actually found in moist CCl₄ by spectroscopy¹¹.

Extraction of Hafnium by N-Benzoyl-N-phenylhydroxylamine in the Presence of Halogenacetic Acids

Fig. 1 shows synergism and antagonism in the hafnium extraction by benzene solutions of N-benzoyl-N-phenylhydroxylamine (HL) in the presence of monohalogenacetic and dibromoacetic acids. The increase of distribution ratio of hafnium (D) strongly contradicts the acetic acid behaviour in that system. Acetic acid has no effect

Acid	K _D	K_2 , 1 mol ⁻¹	Acid	KD	K_2 , 1 mol	
CH2CICOOH	0.0117	67.8	CHBr ₂ COOH	0.153	12.8	
CH ₂ BrCOOH	0.0224	42.8	CCl ₃ COOH	0.62	3.8	
CH ₂ ICOOH	0.041	343	CF ₃ COOH	0.013 ^a	_	

Partition Coefficients and Dimerization Constants of Halogenacetic Acids in 2M-HClO₄/Benzene System

^a Not corrected for the dissociation of CF₃COOH in the aqueous phase (equation (2)), since the value of K_a for I = 2.0 is not known.

Collection Czechoslov. Chem. Commun. (Vol. 39) (1974)

TABLE I

on D up to the concentration of 1M, whereas at higher concentrations D slightly decreases¹². The correlation of the synergic effect of CH₂XCOOH acids with their concentration in the organic phase in the synergic maximum is shown in Table II. The same order of magnitude of synergic effect of all acids agrees with both the values of $[HA]_{org}$ calculated using constants from Table I, and the almost identical acidity of acids¹³ (pK_a \approx 3).

TABLE II Synergic Efficiency of Monohalogenacetic Acids

Acid	C _{HA,tot} at synergic maximum mol l ⁻¹	D _{max} ^a	S ^b	C _{HA,org} mol l ⁻¹	[HA] _{org} mol 1 ⁻¹
CH2ClCOOH	1.25-1.60	15	8.3	0.045 ^c	0.015 ^c
CH ₂ BrCOOH	1.25	13	7.3	0.096°	0.028^{c}
CH,ICOOH	0.8 -1.0	10	5.5	0.41^d	0.024^d

^a Distribution ratio of hafnium at the synergic maximum.^b Synergic effect expressed as D_{max}/D_0 , where D_0 is the distribution ratio of hafnium in the absence of the synergic agent under otherwise indentical conditions, *i.e.* 4.10⁻³M-HL in benzene ($D_0 = 1.8$). ^c For $C_{HA, tot} = 1.25$ M, ^d for $C_{HA, tot} = 1.0$ M.

TABLE III

Solvent Effect on the Synergic Efficiency of CCl3COOHª

Solvent	Slope of the linear part of the log D = f(log $C_{HA, tot}$) function	S ^b	D ₀	C _{HA,org} c mol l ⁻¹
Cyclohexane	2.5	1·8.10 ⁴	0.002	0.0008
CCl4	2.25	$3.5.10^{3}$	0.068	0.0042
Benzene	1.5	9.10^{2}	0.28	0.0226
Chlorobenzene	1.35	$3.6.10^{2}$	0.445	0.0125
Toluene	1.75	$2.4.10^{2}$	0.575	0.019
CHCl ₃	1.0-1.2	$1.5.10^{2}$	0.275	0.031
Nitrobenzene	_	4.2	0.10	0.074

 a [HL]_{tot} = 2 . 10⁻³ M, in nitrobenzene [HL]_{tot} = 2 . 10⁻⁴, b see legend of Table II, c $C_{\rm HA, tot}$ = 0.1M.

Collection Czechoslov. Chem. Commun. (Vol. 39) (1974)

3478

Dibromoacetic acid, the only one of disubstituted acids which was available, shows under identical conditions the synergic effect even at concentrations $< 10^{-2}$ M, where with monosubstituted acids the synergism is not yet exhibited (Fig. 1, curve 4). The value of $S = D_{max}/D_0 = 3.3 \cdot 10^2 (D_0 = 0.048, [HA]_{org} = 0.067$ M for 0.63M-CHBr₂COOH, $pK_a = 1.40$, see¹⁴) was obtained from curve 5 for $1 \cdot 10^{-3}$ M-HL. Both the region of the synergic effect (Fig. 2, curve 4) and its magnitude (curve 5) of trifluoroacetic acid are very much like those of CHBr₂COOH. For trichloroacetic acid, however, the effect of the full halogen substitution is strongly manifested. The synergism starts at concentrations $<10^{-4}$ M and for $1 \cdot 10^{-3}$ M-HL the value of S can be estimated as 5.9 $\cdot 10^3 (D_0 = 0.048, [HA]_{org} = 0.164$ M for 1M-CCl₃COOH, $pK_a = -0.52$, see⁸).

The effect of the solvent on the synergic efficiency of trichloroacetic acid is presented in Table III. Solvents can be arranged into the following series according to their synergic effect: nitrobenzene < CHCl₃ < toluene < chlorobenzene < benzene << CCl₄ < cyclohexane. For the calculations of S, the values of D, which correspond to the total concentration 0·1M-CCl₃COOH, were used. This series, with the exception of benzene, is even more pronounced if we take into account the fact that the equi-

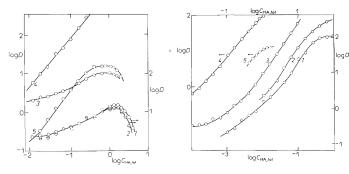


FIG. 1

Dependence of Hafnium Distribution Ratio on the Total Concentration of Monohalogenand Dibromoacetic Acids (HA)

Curve 1: CH₂CICOOH, 2: CH₂BrCOOH, 3: CH₂ICOOH, 4 and 5: CHBr₂COOH. C_{HL} in benzene: Curves 1-4: $4 \cdot 10^{-3}$, 5: $1 \cdot 10^{-3}$ M.

Dependence of Hafnium Distribution Ratio the Total on Concentration of Trihalogenacetic Acids (HA)

Curves 1–3: CCl₃COOH, 4 and 5: CF₃COOH. C_{HL} in benzene: curve 1: 4.10⁻⁴, 2 and 5: 1.10⁻³, 3 and 4: 2.10⁻³M. The upper horizontal scale is for CF₃COOH.

librium concentration of CCl₃COOH in the organic phase is inversely proportional to the value of S(S is the highest for cyclohexane, where [CCl₃COOH]_{org} is the lowest). The synergic series of solvents is approximately identical with that of the system Hf(IV)–HL–phenol¹ and is again most likely caused by the interaction of CCl₃COOH with the solvent which affects the activity of the former. The effect is most pronounced for nitrobenzene which almost completely suppresses synergism, similarly as in the system Hf(IV)–HL–picric acid². Here the solvent–CCl₃COOH interaction is obviously considerable as shown also by the formation of molecular complexes of nitrobenzene with CCl₃COOH¹⁵.

Even though not all halogenacetic acids have been studied, it is obvious that their synergic effect increases with the degree of substitution of the methyl group, in another words with decreasing dimerization constant and/or increasing acidity. This proves that the synergically active component is the monomeric acid HA.

It has not been possible to determine the number of monohalogenacetic molecules which take part in the formation of the synergic complex from the dependence of $\log D$ on the total concentration of the acid. The reason is that the synergism

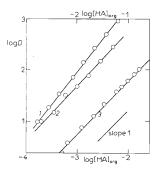
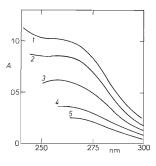



FIG. 3

Dependence of Hafnium Distribution Ratio on the Equilibrium Concentration of Halogenacetic Acids in the Organic Phase

Curve 1: CCl₃COOH, 2: CHBr₂COOH (upper horizontal scale), 3: CF₃COOH (lower horizontal scale); $2 \cdot 10^{-3}$ M-HL in benzene.

Absorption Spectra of HL in Equilibrium Aqueous Phase after Extraction of $1 \cdot 10^{-3}$ M--HL in CCl₄ into 2M-HClO₄ in the Presence of CCl₃COOH

 $\begin{array}{l} [{\rm CCI}_3 {\rm COOH}]_{\rm tot} \mbox{ and } [{\rm HL}]_{\rm aq} : \mbox{ curve } 1: \\ 0, 2:15 . 10^{-4}; 2: 0.025, 1:82 . 10^{-4}; 3: 0:10, \\ 1:3 . 10^{-4}; 4: 0.40, \ 7.7 . 10^{-5}; \ 5: 1.0 \mbox{ M}, \\ 5:4 . 10^{-5} \mbox{ M}. \end{array}$

is weak and at higher acid concentrations antagonism becomes dominant (Fig. 1). Neither are these dependences applicable to other acids because their slope values are not integral numbers and change continuously. Fig. 3 shows the linear dependences of log D (values for 2 $\cdot 10^{-3}$ M-HL are from Fig. 2 and those for 4 $\cdot 10^{-3}$ M-HL from Fig. 1) on the equilibrium concentration of monomeric acid HA in the organic phase for CCl₃COOH, CF₃COOH and CHBr₂COOH with the corresponding slopes of 1.35, 1.0 and 1.2 respectively. This proves that one molecule of CF₃COOH takes part in the formation of the synergic complex. This conclusion may also be extended to CCl₃COOH and CHBr₂COOH. The corresponding values of slopes of curves in Fig. 3 are somewhat higher since for their determination dimerization constants from Table I were used and consequently the presence of hydrated forms of HA or

 $(HA)_2$ in the organic phase has not been considered. While the dissociation of monohalogen- $(pK_a 3, see^{13})$ and dibromoacetic acid $(pK_a = 1.4, see^{14})$ may be neglected in the 2M-HClO₄ medium, and the value of $[H^+]_{equil} = 2.0M$, in case of CCl₃COOH, however, the acidity changes if the acid concentration is increased in a mixture with 2M-HClO4. An estimate has been made how such a change affects the slope values in Fig. 3. The equilibrium concentration [H⁺] was calculated by successive approximations, as it had been done in the calculation of $K_{\rm D}$ and K_2 of trichloroacetic acid. In curve 1 in Fig. 3, the point with the highest [CCl₃COOH]_{org} corresponds to the following composition of the aqueous phase: 2.0M-HClO₄ + 0.25M-CCl₃COOH. Through successive approximations, the value of $[H^+]_{equil} = 2.15 \text{ M}$ is obtained which makes the value of D lower. The function log $D = f(\log [HL]_{tot})$ has the slope of 2.0 for 0.25M-CCl₃COOH. Thus the corresponding deviation in log D is approximately 0.06 which does not appreciably exceed error limits in the experimental determination of D. With decreasing concentration of CCl₃COOH this effect is further reduced (e.g. in 0.1M-CCl₃COOH $[H^+]_{equil} = 2.06$ and $\Delta \log D = 0.03$, so that the changes of $[H^+]_{equil}$ do not practically affect the slope value of curve 1 in Fig. 3. The same situation holds for curve 3 for CF₃COOH at lower concentrations of the acid. Nevertheless, more accurate calculation for higher concentrations is not possible since the value of dissociation constant is not known for higher ionic strength. It may, however, be estimated considering the thermodynamic value of the constant, which is quoted in the limits $4-8 \mod 1^{-1}$ (see¹⁶), that even for the highest concentrations used, viz. 1.0M-CF₃COOH, the value of $\Delta \log D$ will not exceed 0.15-0.2. Such a change would result in the increase of the slope value to 1.2. Other papers^{17,18}, however, quote the thermodynamic value of dissociation constant as <2, which again would make the corresponding change of the slope value negligible.

The functions of log $D vs \log C_{HL, tot}$ in the presence of halogenacetic acids are straight lines whose slopes have lower values than that for the system benzene/2M--HClO₄ for which the value of 2.7 (see¹) has been found. The following values of slopes have been determined: 2.4 for 1.0M-CF₃COOH, 0.63M-CH₂ClCOOH and

0.025M-CCl₃COOH, 2.15 for 0.1M-CCl₃COOH and 1.95 for 1.0M-CCl₃COOH. The relation between the slope value and the increasing concentration of the synergic agent is inverse to that of phenol¹. Since the slope of the function $\log D vs \log [HL]_{int}$ gives the difference in the average number of ligands L⁻ coordinated to the Hf(IV) ion in the organic and aqueous phases $(\bar{n}_{ore} - \bar{n}_{ao})$ the easiest interpretation of the decrease in the slope value on increasing the concentration of halogenacetic acid (especially of CCl₃COOH) would therefore be in the increase of \bar{n}_{ac} , in another words in the increase of the degree of complexation of Hf(IV) in the aqueous phase. This is, however, in contrast with the spectrophotometric measurement of the HL distribution (Fig. 4) which shows that with increasing concentration of CCl₃COOH the equilibrium concentration of HL in the aqueous phase decreases and hence also \bar{n}_{acc} decreases (CCl₄ was used for these measurements since benzene absorption would interfere with the photometric determination of HL). The fact that with the increasing concentration of CCl₃COOH the distribution ratio of HL increases ([HL]_{an} decreases) is characteristic for an interaction of both components in the organic phase¹⁹. This interaction is also proved by higher solubility of HL in CCl4 in the presence of CCl₃COOH. It may be assumed that the carboxylic hydrogen is bonded to the tertiary nitrogen atom of HL (e.g. the formation constant of the molecular complex of CCl₃COOH with N,N'-dimethylaniline in benzene is $5.5 \cdot 10^2 \text{ l mol}^{-1}$, see²⁰). Such interaction could not, however, be proved by infrared spectroscopy because the region of valence vibrations of the N-H-O group (2500-2800 cm⁻¹ in such complexes²¹) is overlapped by the region of the O—H and O—H—O vibrations.

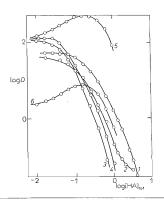


FIG. 5

Dependence of Hafnium Distribution Ratio on the Total Concentration of Halogenacetic Acids for the Extraction by Di-n-butylphosphoric Acid in Benzene

Curve 1: CH₂ClCOOH, 2: CH₂BrCOOH, 3: CHBr₂COOH, 4: CCl₃COOH, 5 and 6: CF₃COOH. [DBP]_{tot}: curve 1-5: $1\cdot 5 \cdot 10^{-3}$, 6: $5 \cdot 10^{-4}$ M.

Extraction of Hafnium by Di-n-butylphosphoric Acid in the Presence of Halogenacetic Acids

Fig. 5 shows the effect of halogenacetic acids on the extraction of hafnium by di-nbutylphosphoric acid (DBP) into benzene from 2M-HClO₄. The shape of the curves is basically identical to that of unsubstituted monocarboxylic acids. The antagonism, which has been discussed earlier¹², takes place in most cases. Exceptional is CF₃COOH (curves 5 and 6) which shows a slight but well developed synergism before the region of antagonism. Since there is a continuous transition between both phenomena, and the interaction constants of DBP with CF₃COOH are not known, the synergism has not been further studied.

Origin of Synergism in the Extraction Using N-Benzoyl-N-phenylhydroxylamine

Two interpretations of the synergism in the system Hf(IV)-HL-halogenacetic acid can be suggested. The first one is analogous to the synergism of phenols¹ and nitrophenols² and is based on the addition of the acid to the HL_4 chelate through hydrogen bond. In this case $\bar{n}_{org} = 4$. Owing to the decrease of $[HL]_{sq}$ and hence also of \bar{n}_{sq} in the presence of halogenacetic acid (Fig. 4), the slope of the log $D = f(\log [HL]_{tol})$ function should, with the increasing concentration of halogenacetic acid, increase from the value of 2.7 (see¹). This type of synergism may therefore be rejected.

The second explanation seems to be more likely. It is based on the substitution of one L⁻ anion in the HfL₄ chelate with the formation of a HfL₃A complex. If the latter coexists in the organic phase with the original chelate HfL₄, then the value of \bar{n}_{org} would decrease from 4 to 3 with the increasing concentration of the synergic agent. The observed trend of the slopes of the log $D = f(\log [HL]_{tot})$ functions might then be interpreted considering the change of \bar{n}_{aq} being less significant than that of \bar{n}_{org} . This mechanism does not contradict general chemical properties of hafnium and zirconium. In contrast to the M(IV)-OAryl bond, the bond M(IV)-OOCR is stable even in the presence of water. Recently a number of defined complexes of zirconium and hafnium with this bond (*e.g.* with trichloroacetic acid²²) have been isolated from aqueous solutions.

REFERENCES

- 1. Hála J.: Less-Common Metals 26, 117 (1972).
- 2. Hála J., Smola J.: This Journal 38, 2588 (1973).
- 3. Christian S. D., Affsprung H. E., Taylor S. A.: J. Phys. Chem. 67, 187 (1963).
- 4. Kuča L., Högfeldt E.: Acta Chem. Scand. 21, 1017 (1967).
- 5. Leo A., Hansch C., Elkins D.: Chem. Rev. 71, 525 (1971).
- 6. Sekine T., Isayama M., Yamaguchi S., Moriya H.: Bull. Chem. Soc. Japan 40, 27 (1967).
- 7. Hála J., Smola J.: J. Inorg. Nucl. Chem. 31, 1133 (1968).
- 8. Bonner O. D., Flora H. B., Aitken H. W.: J. Phys. Chem. 75, 2492 (1971).

3484

- 9. Diamond R., Tuck D. G.: Progr. Inorg. Chem. 2, 109 (1960).
- 10. Christian S. D., Stevens T. L.: J. Phys. Chem. 76, 2039 (1972).
- 11. Villepin J., Lautié A., Josien M. L.: Ann. Chim. (Paris) 1, 365 (1966).
- 12. Hála J., Sotulářová L.: J. Inorg. Nucl. Chem. 31, 2247 (1969).
- 13. Albert A., Sargent S.: Konstanty Ionizacii Kislot i Osnovanij, p. 118. Chimija, Moscow 1964.
- Odjakov V. F.: Reakc. Sposob. Org. Soed., Tartu Gosud. Univ. 3, No 1,36 (1966); Chem. Abstr. 66, 108897 (1967).
- Kulikova R. M., Knjažkova T. F.: Trudy Tomsk. Gosud. Univ., Ser. Chim. 185, 93 (1965); Chem. Abstr. 66, 32427 (1967).
- 16. Covington A. K., Freeman J. G., Lilley T. H.: J. Phys. Chem. 74, 3773 (1970).
- 17. Grunwald E., Haley J. F.: J. Phys. Chem. 72, 1944 (1968).
- 18. Hood G. C., Redlich O., Reilly C. A.: J. Chem. Phys. 23, 2229 (1970).
- 19. LeRoux H. J., Fouché K. F.: J. Inorg. Nucl. Chem. 34, 747 (1972).
- 20. Maroski J. G.: Mendel Bull, 79 (1963); Chem. Abstr. 63, 6371 (1965).
- 21. Smith J. W., Vitoria M. C.: J. Chem. Soc. 1968, 2468.
- 22. Šeka I. A., Kačerova S. R., Malinko L. A.: Ž. Neorg. Chim. 9, 312 (1964).

Translated by V. Kratochvil.